Commutative Algebra Fall 2013 Lecture 7

Karen Yeats Scribe: Stefan Trandafir

December 9, 2013

1 A Counterexample

Last time we noted that free modules over a noncommutative ring don't necessarily have a rank, but we didn't have an example. Here's one:

Let $M = \mathbb{Z} \times \mathbb{Z} \times ...$ as a \mathbb{Z} module. Let $R = End_{\mathbb{Z}}(M)$. Think of R as a left R-module. Let $\phi_1(a_1, a_2, ...) = (a_1, a_3, a_5, ...)$. Let $\phi_2(a_1, a_2, ...) = (a_2, a_4, a_6, ...)$. Let $\psi_1(a_1, a_2, ...) = (a_1, 0, a_2, 0, ...)$. Let $\psi_2(a_1, a_2, ...) = (0, a_1, 0, a_2, ...)$. Then $(\psi_1 \phi_1 + \psi_2 \phi_2)(a_1, a_2, ...) = (a_1, a_2, ...)$ so $\psi_1 \phi_1 + \psi_2 \phi_2 = 1$. Thus ϕ_1 and ϕ_2 generate R. $\phi_1 \psi_1 = 1, \phi_2 \psi_2 = 1, \phi_1 \psi_2 = 0 \phi_2 \psi_1 = 0$. So if $\alpha_1 \phi_1 + \alpha_2 \phi_2 = 0$ then $0 = \alpha_1 \phi_1 \psi_1 + \alpha_2 \phi_2 \psi_2 = \alpha_1$. Similarly, $0 = \alpha_1 \phi_1 \psi_2 + \alpha_2 \phi_2 \psi_2 = \alpha_2$. So $\{\phi_1, \phi_2\}$ is a base for R. $R^2 \to R$ $(\alpha_1, \alpha_2) \mapsto \alpha_1 \phi_1 + \alpha_2 \phi_2$.

The same calculations show that this is an isomorphism, so rank is NOT well defined for R modules.

2 Finitely Generated Modules Over PIDs

First let's talk about torsion:

<u>Definition</u>: Let R be a commutative integral domain and M an R-module. Then $a \in M$ is a <u>torsion element</u> if $Ann_R(a) \neq 0$. Let $tor(M) = \{a \in M : a \text{ is a torsion element}\}$.

Note tor(M) is a submodule of M:

If $a_1, a_2 \in tor(M)$ say $r_1a_1 = 0, r_2a_2 = 0, r_1 \neq r_2$, then $r_1r_2(a_1 + a_2) = 0$ so $a_1 + a_2 \in tor(M)$ and for any $r \in R$ $r_1ra_1 = r(r_1a_1) = 0$ so $ra_1 \in tor(M)$.

Proposition: (Basic Torsion Facts)

Let R be a commutative integral domain.

1. If $f: M \to N$, then $f(tor(M)) \subseteq tor(N)$. 2. $tor(M_1 \oplus M_2) = torM_1 \oplus torM_2$.

3. $R^{(n)}$ is torsion free.

Proof:

1. Take $a \in tor(M)$ with $ra = 0, r \neq 0$. Then f(ra) = rf(a), so $f(a) \in tor(N)$. 2. Let ν_1, ν_2 be the canonical maps for $M_1 \oplus M_2$, by $1 \nu_i(tor(M_i)) \subseteq tor(M_1 \oplus M_2)$ so $tor M_1 \oplus tor(M_2) \subseteq tor(M_1 \oplus N_2)$ and if $(a_1, a_2) \in tor(M_1 \oplus M_2)$ say $r(a_1, a_2) = 0, r \neq 0$ then $ra_1 = 0, ra_2 = 0$.

3. R is torsion free over itself since it has no zero divisors. Then apply 2.

<u>Proposition:</u> Let R be a PID. Any submodule of a free module of rank n is free of rank at most n.

Proof: By induction on n.

Let M be the module. If n = 1 then R = M the submodules of R are its left ideals, which are of the form Rr for some $r \in R$ and $Ann_R(r) = 0$ since R has no zero divisors so $\{r\}$ is a base for Rr if $r \neq 0$, otherwise Rr = 0.

Suppose M is a submodule of $R^{(n)}$. Let $\{e_i\}$ be the standard base.

Let $\phi : R^{(n)} \to R^{(n-1)}$. $e_i \mapsto e_i \ (i < n)$ $e_n \mapsto 0$. By induction $\phi(M)$

By induction, $\phi(M)$ is free of rank $\leq n - 1$. $Ker\phi = Re_n$. So MRe_n is free of rank ≤ 1 . So by the proposition that ranks add, the $rank(M) \leq n$.

Proposition: a finitely generated torsion free module over a PID is free.

<u>Proof:</u> Let $\{x_1, ..., x_n\}$ span M with M torsion free. Let $\{v_1, ..., v_l\}$ be a maximal subset of M with $\Sigma r_i v_i = 0 \Rightarrow r_i = 0$.

For $x_i \notin \{v_1, \dots, v_l\}$ by maximality $\exists s_i \in R, s_i \neq 0$, such that $s_i x_i + b_{i1} + \dots + b_{il} v_l = 0$.

Let s be the product of the s_i . Then $sM \subseteq N$ where N is the module spanned by $\{v_1, ..., v_l\}$ then the map $M \to N$ defined by $x \mapsto sx$ is injective since M is torsion free. So sM is free as it is a submodule of a free module and $M \cong sM$ so M is free.

Proposition: Let R be a PID, and M be a finitely generated R-module. Then $M \cong tor(M) \oplus M/tor(M)$. M/tor(M) is finitely generated and torsion free, and so $M/tor(M) \cong R^{(r)}$ for some r.

<u>Proof:</u> First let's check that M/tor(M) is torsion free. Take $x \in tor(M)$ and suppose it has a non-zero annihilator, so $\exists r \in R, r(x+tor(M)) = tor(M), r \neq 0$.

So $rx \in tor(M)$ so $\exists s \in R, s \neq 0$ such that srx = 0 but $sr \neq 0$ so $x \in tor(M)$. Next note that M/tor(M) is finitely generated so we can use the previous result.

Consider $0 \to tor(M) \to M/tor(M) \to 0$. This is exact (with π from M to M/tor(M). We want it to be split. M/tor(M) is free, let $\{x_1, ..., x_n\}$ be a base. Pick $a_i \in M$. $\pi(a_i) = x_i$. Then define $g: M/tor(M) \to M$ $x_i \mapsto a_i$.

This exists and gives the splitting, so we are done.

Recall in a PID, every irreducible is prime.

<u>Definition</u>: Let p be a prime of R. Then $M_p = \{m \in tor(M) : \exists i : p^i m = 0\}$ is a p-primary module.

Proposition: M_p is a submodule of M.

<u>Proof:</u> Take $a_1, a_2 \in M_p$. Then $p^i a_1 = 0, p^j a_2 = 0$, so $p^{i+j}(a_1 + a_2) = 0$ and $p^i r a_1 = r p^i a_1 = 0$.

Proposition: $tor(M) = \oplus M_p$ where the sum runs over a finite set of primes of R.

<u>Proof:</u> Choose $\{p_i\}_{i \in I}$ such that every prime of R can be uniquely written as up_i for some unit u and some i. Consider $\phi : \oplus M_{p_i} \to tor(M)$ $(m_i) \to zm_i$

Check that ϕ is an isomorphism. Take $x \in tor(M), x \neq 0$, then $Ann_R(x)$ is a nonzero ideal of R so it is principal, say $Ra = Ann_R(x)$ so write $a = u\pi p_i^{n_i}, u$ unit.

Consider the elements $a/p_i^{u_i}$, the gcd of these elements is 1 so $\exists r_i$ such that $1 = \sigma r_i a/p_i^{n_i}$. So $x = \sigma r_i a/p_i^{n_i}$ x. Further, $p_i^{n_i} x_i = ax = 0$, so $x_i \in M_{p_i}$, so $x = \phi((r_i x_i))$, thus ϕ is onto.

Next, suppose $(x_i) \in Ker\phi$. Then $\Sigma x_i = 0$. Suppose $p_i^{n_i} x_i = 0$. WLOG, say i runs from 1 to n. Then $p_2^{n_2} \dots p_n^{x_n}$ annihilates $x_2, \dots x_k$ so $p_2^{n_2} \dots p_k^{n_k} \in Ann_R(x_1)$, but x_1 is from the p_1 -primary part so $Ann_R(x_1) = Rp_1^{n_1}$ which is impossible by unique factorization.

Thus ϕ is an isomorphism.

Finally, since M is finitely generated, $M \cong (\oplus Mp_i) \oplus M/tor(M)$. So each generator of M uses only finitely many summands, thus all together they use only finitely many summands, so the whole sum only involves finitely many pieces. It remains to check that each M_p is a direct sum of cyclic modules.

<u>Definition</u>: A submodule N of M is pure if whenever $ax \in N, a | inR, x \in M$

then $\exists z \in N$ such that az = ax.

<u>Lemma:</u> If $P = Rx_0$ is a pure cyclic submodule of a finitely generated module N, and N/P is a direct sum of cyclic modules, then $N = N/P \oplus P$.

<u>Proof:</u> Let $x_i + P$ be a set of generators for the summands of N/P (finitely many since N is finitely generated, say i = 1, ..., k).

Let a_i generate $Ann_R(x_i+P)$, so $a_ix_i \in P \forall i$. Since P is pure, $\exists z_i \in P$ such that $a_iz_i = a_ix_i$. Let $y_i = x_i - z_i$. Then $a_iy_i = 0$ so $a_i \in Ann_R(y_i)$ and if $a \in Ann_(y_i)$ then $ax_i = az_i$ so $a \in Ann_R(x_i+P)$ so $Ann_r(y_i) = Ann_R(x_i+P) = Ra_i$. So by the first isomorphism theorem $Ry_i = R/Ann_R(y_i) = R/Ra_i = R(x_i+P)$.

So it suffices to prove that $M = Rx_0 \oplus (\oplus Ry_i)$.

So take $m \in M$, $m + P = \sigma r_i(x_i + P) = \sigma r_i(y_i + P)$. Then $m - \sigma r_i y_i \in P_k$. Thus $m \in P \oplus (\oplus Py_i)$.

For directness, note, say $r_0x_0 + r_1y_1 + ... + r_ky_k = 0$, then $r_1(y_1 + P) + ... + r_k(y_k + P) \in P$, so by directness of N/P, $r_1 = r_2 = ... = r_k = 0$. So $r_0x_0 = 0$, so $r_0 = 0$. Thus sum is direct.