Commutative Algebra Fall 2013 Lecture 7

Karen Yeats
Scribe: Stefan Trandafir

December 9, 2013

1 A Counterexample

Last time we noted that free modules over a noncommutative ring don't necessarily have a rank, but we didn't have an example. Here's one:

Let $M=\mathbb{Z} \times \mathbb{Z} \times \ldots$ as a \mathbb{Z} module.
Let $R=E n d_{\mathbb{Z}}(M)$.
Think of R as a left R -module.
Let $\phi_{1}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{3}, a_{5}, \ldots\right)$. Let $\phi_{2}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{4}, a_{6}, \ldots\right)$.
Let $\psi_{1}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, 0, a_{2}, 0, \ldots\right)$. Let $\psi_{2}\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, 0, a_{2}, \ldots\right)$.
Then $\left(\psi_{1} \phi_{1}+\psi_{2} \phi_{2}\right)\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)$ so $\psi_{1} \phi_{1}+\psi_{2} \phi_{2}=1$.
Thus ϕ_{1} and ϕ_{2} generate R.
$\phi_{1} \psi_{1}=1, \phi_{2} \psi_{2}=1, \phi_{1} \psi_{2}=0 \phi_{2} \psi_{1}=0$.
So if $\alpha_{1} \phi_{1}+\alpha_{2} \phi_{2}=0$ then $0=\alpha_{1} \phi_{1} \psi_{1}+\alpha_{2} \phi_{2} \psi_{2}=\alpha_{1}$.
Similarly, $0=\alpha_{1} \phi_{1} \psi_{2}+\alpha_{2} \phi_{2} \psi_{2}=\alpha_{2}$. So $\left\{\phi_{1}, \phi_{2}\right\}$ is a base for R.
$R^{2} \rightarrow R$
$\left(\alpha_{1}, \alpha_{2}\right) \mapsto \alpha_{1} \phi_{1}+\alpha_{2} \phi_{2}$.
The same calculations show that this is an isomorphism, so rank is NOT well defined for R modules.

2 Finitely Generated Modules Over PIDs

First let's talk about torsion:

Definition: Let R be a commutative integral domain and M an R-module. Then $a \in M$ is a torsion element if $\operatorname{Ann}_{R}(a) \neq 0$. Let $\operatorname{tor}(M)=\{a \in M:$ a is a torsion element $\}$.

Note $\operatorname{tor}(M)$ is a submodule of M :
If $a_{1}, a_{2} \in \operatorname{tor}(M)$ say $r_{1} a_{1}=0, r_{2} a_{2}=0, r_{1} \neq r_{2}$, then $r_{1} r_{2}\left(a_{1}+a_{2}\right)=0$ so $a_{1}+a_{2} \in \operatorname{tor}(M)$ and for any $r \in R r_{1} r a_{1}=r\left(r_{1} a_{1}\right)=0$ so $r a_{1} \in \operatorname{tor}(M)$.

Proposition: (Basic Torsion Facts)

Let R be a commutative integral domain.

1. If $f: M \rightarrow N$, then $f(\operatorname{tor}(M)) \subseteq \operatorname{tor}(N)$.
2. $\operatorname{tor}\left(M_{1} \oplus M_{2}\right)=\operatorname{tor} M_{1} \oplus$ tor M_{2}.
3. $R^{(n)}$ is torsion free.

Proof:

1. Take $a \in \operatorname{tor}(M)$ with $r a=0, r \neq 0$. Then $f(r a)=r f(a)$, so $f(a) \in \operatorname{tor}(N)$.
2. Let ν_{1}, ν_{2} be the canonical maps for $M_{1} \oplus M_{2}$, by $1 \nu_{i}\left(\operatorname{tor}\left(M_{i}\right)\right) \subseteq \operatorname{tor}\left(M_{1} \oplus\right.$ $\left.M_{2}\right)$ so $\operatorname{tor} M_{1} \oplus \operatorname{tor}\left(M_{2}\right) \subseteq \operatorname{tor}\left(M_{1} \oplus N_{2}\right)$ and if $\left(a_{1}, a_{2}\right) \in \operatorname{tor}\left(M_{1} \oplus M_{2}\right)$ say $r\left(a_{1}, a_{2}\right)=0, r \neq 0$ then $r a_{1}=0, r a_{2}=0$.
3. R is torsion free over itself since it has no zero divisors. Then apply 2 .

Proposition: Let R be a PID. Any submodule of a free module of rank n is free of rank at most n.

Proof: By induction on n.
Let M be the module. If $n=1$ then $R=M$ the submodules of R are its left ideals, which are of the form $R r$ for some $r \in R$ and $A n n_{R}(r)=0$ since R has no zero divisors so $\{r\}$ is a base for Rr if $r \neq 0$, otherwise $R r=0$.

Suppose M is a submodule of $R^{(n)}$. Let $\left\{e_{i}\right\}$ be the standard base.
Let $\phi: R^{(n)} \rightarrow R^{(n-1)}$.
$e_{i} \mapsto e_{i}(i<n)$
$e_{n} \mapsto 0$.
By induction, $\phi(M)$ is free of rank $\leq n-1$. $\operatorname{Ker} \phi=\operatorname{Re}_{n}$. So $M R e_{n}$ is free of $\operatorname{rank} \leq 1$. So by the proposition that ranks add, the $\operatorname{rank}(M) \leq n$.

Proposition: a finitely generated torsion free module over a PID is free.
Proof: Let $\left\{x_{1}, \ldots x_{n}\right\}$ span M with M torsion free. Let $\left\{v_{1}, \ldots v_{l}\right\}$ be a maximal subset of M with $\Sigma r_{i} v_{i}=0 \Rightarrow r_{i}=0$.

For $x_{i} \notin\left\{v_{1}, \ldots v_{l}\right\}$ by maximality $\exists s_{i} \in R, s_{i} \neq 0$, such that $s_{i} x_{i}+b_{i 1}+\ldots+$ $b_{i l} v_{l}=0$.

Let s be the product of the s_{i}. Then $s M \subseteq N$ where N is the module spanned by $\left\{v_{1}, \ldots v_{l}\right\}$ then the map $M \rightarrow N$ defined by $x \mapsto s x$ is injective since M is torsion free. So $s M$ is free as it is a submodule of a free module and $M \cong s M$ so M is free.

Then $M \cong \operatorname{tor}(M) \oplus M / \operatorname{tor}(M) . M / \operatorname{tor}(M)$ is finitely generated and torsion free, and so $M / \operatorname{tor}(M) \cong R^{(r)}$ for some r.

Proof: First let's check that $M / \operatorname{tor}(M)$ is torsion free. Take $x \in \operatorname{tor}(M)$ and suppose it has a non-zero annihilator, so $\exists r \in R, r(x+\operatorname{tor}(M))=\operatorname{tor}(M), r \neq 0$.

So $r x \in \operatorname{tor}(M)$ so $\exists s \in R, s \neq 0$ such that sr $x=0$ but $s r \neq 0$ so $x \in \operatorname{tor}(M)$. Next note that $M / \operatorname{tor}(M)$ is finitely generated so we can use the previous result. Consider $0 \rightarrow \operatorname{tor}(M) \rightarrow M / \operatorname{tor}(M) \rightarrow 0$. This is exact (with π from M to $M / \operatorname{tor}(M)$. We want it to be split. $M / \operatorname{tor}(M)$ is free, let $\left\{x_{1}, \ldots x_{n}\right\}$ be a base. Pick $a_{i} \in M$.

$$
\pi\left(a_{i}\right)=x_{i}
$$

Then define
$g: M / \operatorname{tor}(M) \rightarrow M$
$x_{i} \mapsto a_{i}$.
This exists and gives the splitting, so we are done.

Recall in a PID, every irreducible is prime.
Definition: Let p be a prime of R. Then $M_{p}=\left\{m \in \operatorname{tor}(M): \exists i: p^{i} m=0\right\}$ is a p-primary module.
$\underline{\text { Proposition: }} M_{p}$ is a submodule of M.
Proof: Take $a_{1}, a_{2} \in M_{p}$. Then $p^{i} a_{1}=0, p^{j} a_{2}=0$, so $p^{i+j}\left(a_{1}+a_{2}\right)=0$ and $p^{i} r a_{1}=r p^{i} a_{1}=0$.

Proposition: $\operatorname{tor}(M)=\oplus M_{p}$ where the sum runs over a finite set of primes of R .
Proof: Choose $\left\{p_{i}\right\}_{i \in I}$ such that every prime of R can be uniquely written as $u p_{i}$ for some unit u and some i. Consider $\phi: \oplus M_{p_{i}} \rightarrow \operatorname{tor}(M)$ $\left(m_{i}\right) \rightarrow z m_{i}$

Check that ϕ is an isomorphism. Take $x \in \operatorname{tor}(M), x \neq 0$, then $A n n_{R}(x)$ is a nonzero ideal of R so it is principal, say $R a=A n n_{R}(x)$ so write $a=u \pi p_{i}^{n_{i}}, u$ unit.

Consider the elements $a / p_{i}^{u_{i}}$, the gcd of these elements is 1 so $\exists r_{i}$ such that $1=\sigma r_{i} a / p_{i}^{n_{i}}$. So $x=\sigma r_{i} a / p_{i}^{n_{i}} \mathrm{x}$. Further, $p_{i}^{n_{i}} x_{i}=a x=0$, so $x_{i} \in M_{p_{i}}$, so $\mathrm{x}=$ $\phi\left(\left(r_{i} x_{i}\right)\right)$, thus ϕ is onto.

Next, suppose $\left(x_{i}\right) \in \operatorname{Ker} \phi$. Then $\Sigma x_{i}=0$. Suppose $p_{i}^{n_{i}} x_{i}=0$. WLOG, say i runs from 1 to n. Then $p_{2}^{n_{2}} \ldots p_{n}^{x_{n}}$ annihilates $x_{2}, \ldots x_{k}$ so $p_{2}^{n_{2}} \ldots p_{k}^{n_{k}} \in A n n_{R}\left(x_{1}\right)$, but x_{1} is from the p_{1}-primary part so $A n n_{R}\left(x_{1}\right)=R p_{1}^{n_{1}}$ which is impossible by unique factorization.

Thus ϕ is an isomorphism.
Finally, since M is finitely generated, $M \cong\left(\oplus M p_{i}\right) \oplus M / \operatorname{tor}(M)$. So each generator of M uses only finitely many summands, thus all together they use only finitely many summands, so the whole sum only involves finitely many pieces. It remains to check that each M_{p} is a direct sum of cyclic modules.

Definition: A submodule N of M is pure if whenever $a x \in N, a \mid i n R, x \in M$
then $\exists z \in N$ such that $a z=a x$.
Lemma: If $P=R x_{0}$ is a pure cyclic submodule of a finitely generated module N, and N / P is a direct sum of cyclic modules, then $N=N / P \oplus P$.

Proof: Let $x_{i}+P$ be a set of generators for the summands of N / P (finitely many since N is finitely generated, say $i=1, . ., k)$.
Let a_{i} generate $A n n_{R}\left(x_{i}+P\right)$, so $a_{i} x_{i} \in P \forall i$. Since P is pure, $\exists z_{i} \in P$ such that $a_{i} z_{i}=a_{i} x_{i}$. Let $y_{i}=x_{i}-z_{i}$. Then $a_{i} y_{i}=0$ so $a_{i} \in \operatorname{Ann}_{R}\left(y_{i}\right)$ and if $a \in \operatorname{Ann}\left(y_{i}\right)$ then $a x_{i}=a z_{i}$ so $a \in \operatorname{Ann} n_{R}\left(x_{i}+P\right)$ so $A n n_{r}\left(y_{i}\right)=A n n_{R}\left(x_{i}+P\right)=R a_{i}$. So by the first isomorphism theorem $R y_{i}=R / A n n_{R}\left(y_{i}\right)=R / R a_{i}=R\left(x_{i}+P\right)$.

So it suffices to prove that $M=R x_{0} \oplus\left(\oplus R y_{i}\right)$.
So take $m \in M, m+P=\sigma r_{i}\left(x_{i}+P\right)=\sigma r_{i}\left(y_{i}+P\right)$. Then $m-\sigma r_{i} y_{i} \in P_{k}$.
Thus $m \in P \oplus\left(\oplus P y_{i}\right)$.
For directness, note, say $r_{0} x_{0}+r_{1} y_{1}+\ldots r_{k} y_{k}=0$, then $r_{1}\left(y_{1}+P\right)+\ldots+$ $r_{k}\left(y_{k}+P\right) \in P$, so by directness of $N / P, r_{1}=r_{2}=\ldots=r_{k}=0$.
So $r_{0} x_{0}=0$, so $r_{0}=0$. Thus sum is direct.

